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Turbulent entrainment in stratified flows 

By T. H. ELLISON AND J. S. TURNER 
Department of the Mechanics of Fluids, University of Manchester 

(Received 19 February 1959) 

When a fluid which is lighter than its surroundings is emitted by a source under 
a sloping roof (or a heavier fluid from a source on a sloping floor), it may flow as 
a relatively thin turbulent layer. The motion of this layer is governed by the 
rate at which it entrains the ambient fluid. A theory is presented in which it is 
assumed that the entrainment is proportional to the velocity of the layer 
multiplied by an empirical function, E(Ri), of the overall Richardson number 
for the layer defined by Ri = g(p,-p) h/p, V 2 .  This theory predicts that in 
most practical cases the layer will rapidly attain an equilibrium state in which 
Ri does not vary with distance downstream, and the gravitational force on the 
layer is just balanced by the drag due to entrainment together with friction on 
the floor or roof. 

Two series of laboratory experiments are described from which E(Ri) can be 
determined. In  the first, the spread of a surface jet of fluid lighter than that over 
which it is flowing is measured; in the second, a study is made of the flow of a 
heavy liquid down the sloping floor of a channel. These experiments show that 
E falls off rapidly as Ri increases and is probably negligible when Ri is more than 
about 0.8. 

The theoretical and experimental results allow predictions to be made of flow 
velocities once the rate of supply of density difference is known. An estimate 
is also given of the uniform velocity which the ambient fluid must possess in 
order to cause the motion of the layer to be reversed. 

1. Introduction 
There are many situations in nature in which a thin layer of fluid lighter than 

its surroundings flows up under a sloping roof, or a layer of fluid heavier than 
its surroundings flows down a sloping floor. In  some cases such flows are of 
considerable economic importance. For example, katabatic winds in the 
atmosphere, in which air cooled by contact with cold ground flows downhill, 
are of importance to agriculture because of their influence on frost damage; 
also they may carry smoke or fog and so affect visibility at  airfields and ports. 
The accumulation of smog in valleys is a slightly different but related problem 
(Scorer 1954). In  some regions, such as the coasts of Greenland and Antarctica, 
katabatic winds may attain great strength (Ball 1956). Some bottom currents 
in the ocean are similar; Dietrich (1956) has described the flow of cold water 
from the Arctic over a submarine ridge between Iceland and the Faroes. In  
estuaries, where lighter river water meets the sea, a variety of complicated 
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phenomena may occur (Stommel 1953) ; but in certain fjord-like estuaries, 
such as the Alberni Inlet (Tully 1949), the fresh water flows out on the sea 
surface in a manner which closely resembles the experiments to be described 
in $ 5 .  

Heavy layers may also be formed on account of the extra weight of suspended 
solids. This is the case in turbidity currents in the oceans (Kuenen 1952) and 
probably to some extent in dust-storms in the atmosphere such as the Sudan 
haboob (Freeman 1952). In  these cases, and also in connexion with some 
phenomena of sea-breezes, interest centres more on the rate of advance of the 
leading edge of the heavy fluid than on the steady state (Berson 1958) though 
the latter is still important. Density currents in reservoirs (Bell 1943) are of 
interest to engineers because of their effect on silting. The most important 
example of a flow in which the moving layer is lighter than its surroundings is 
to be found in coal mines. Methane can accumulate near the roof and the way 
in which it flows and the extent to which it mixes with air have an important 
bearing on safety. It was this aspect of the problem which led to the work 
reported here being undertaken. 

When planning an investigation of the flows listed above, it is useful to 
realize that the range of conditions which may be encountered in one context, 
such as the flow of methane in mines, may be greater than the difference between 
that situation and an apparently disconnected one, such as the flow in an 
estuary. It is therefore desirable to classify the flows according to fundamental 
hydrodynamical properties and not geophysical context. One obvious group 
of such properties is the relative depth, velocity and level of turbulence in the 
thin layers and the ambient fluid. In  order to  illustrate this, let us consider a 
source of methane in the roof of a sloping gallery in a mine. If the ambient air 
is at rest, the methane will form a thin layer and move up along the roof; the 
thickness and velocity of the layer will depend on the slope and the rate of 
emission of methane. If the velocity is small enough the layer may remain 
laminar for a considerable distance; otherwise it will become turbulent. If we 
now add the possibility that the ambient air may itself be moving and may 
either be effectively laminar (in most practical cases a very low level of turbu- 
lence would be implied rather than true laminar flow) or highly turbulent, it  
will be seen that a large number of cases must be considered. Each of these is 
likely to show its own phenomena and require its own theory. 

This paper is concerned only with the case when the thin layer is turbulent 
and the ambient fluid either at rest or moving with a very low level of turbu- 
lence. The situation has similarities both with the motion of a buoyant plume 
and with the ordinary flow of water in an open channel. A theory is presented, 
describing the overall properties of the layer, which is based on the same 
physical principles as the theory of plumes but takes account of the stabilizing 
effect of the density difference across the edge of the layer. In  place of a single 
entrainment constant, an entrainment function, E(Ri), depending on the 
overall Richardson number of the layer, is used. This function has to be deter- 
mined empirically. The theory leads to a generalization of the equations for 
slowly varied flow in hydraulics. 
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Two sets of experiments are reported which enable the function E(Ri) to be 
deduced and the profiles of velocity and density in the layers to be studied. 
From these it is seen that stability will normally have a drastic effect on entrain- 
ment in many natural situations. While the experiments give general support 
for the theory, they reveal a number of minor complications. 

In  the final part of this paper, the application of the work is discussed and the 
effect of movement of the ambient fluid is calculated. 

2. Entrainment The concept of entrainment 

Plumes and jets are examples of free turbulent flows; the region of turbulence 
is of finite extent and adjoins non-turbulent fluid of almost uniform mean 
velocity. The turbulent region grows with distance downstream as the non- 
turbulent fluid becomes entrained in it. This entrainment implies a flow of 
ambient fluid into the turbulent layer, and so, in the case where the ambient 
fluid is initially at rest, a small mean velocity perpendicular to the main flow. 

Although the distribution of stress is not exactly the same in plumes as in 
jets, it is known that the velocity profiles are roughly Gaussian in both cases, 
and it is likely that the large-scale features of the turbulence are also much the 
same. It is also probable that the turbulence is not far from a state of local 
equilibrium uninfluenced by upstream history; and if so it must be determined 
by local scales of velocity and length. 

Provided the Reynolds number is high enough, we should not expect mole- 
cular viscosity to influence the flow greatly (Townsend 1956). There is just a 
chance that the Prandtl (or Schmidt) number, u/D, may influence the turbulent 
diffusion of the agent causing the density variation (temperature, salt concen- 
tration, etc.) even at very high Reynolds numbers. This was suggested by 
Batchelor & Townsend (1956); but since they were unable to predict the 
magnitude of the effect, their ideas have not been widely accepted. The point is 
an important one, since it bears on the relevance of experiments in a water 
channel to large-scale situations where the fluid is a gas, but in the absence of 
further information we can only ignore it for the present with a note of caution. 
If this is done, the velocity of inflow into the turbulent region must be propor- 
tional to the velocity scale of the layer ; the constant of proportionality is called 
the entrainment constant, E. 

The idea of an entrainment constant was first used explicitly by Morton, 
Taylor & Turner (1956) who made it the basis for their theory of plumes. More 
recently Morton (1959) has extended the theory to forced plumes, which are 
emitted with high momentum and so behave initially as jets. In  all these cases 
the boundaries of the turbulent region have been not far from vertical, so it has 
been unnecessary to consider the action of a stable density gradient in inhibiting 
mixing; we refer to them as neutral cases. In  the cases with which this paper is 
particularly concerned, such stability has a drastic influence on the value of the 
entrainment constant. 

The numerical value of E clearly depends on the definition of the length scale 
that is used, and the use of scales associated with particular shapes of profile 
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has led to some confusion in the past. Our presentation is in terms of integrals 
over the profiles and avoids any assumption about their shape. For brevity, we 
consider only the two-dimensional case. 

DeJinition of the entrainment constant 

Take the x-axis along the plume or jet, and the y-axis perpendicular to it, 
measuring y from the plane of symmetry when both sides of the flow are free 
and from the boundary when the plume is along a floor or roof. Let v(x, y) 
denote the mean velocity relative to that in the ambient fluid, and let V ( x ) ,  h(x) 
and A(x)/g be the velocity, length and density scales in the cross-section, and A 
the flux of density difference (which is independent of x). Then the quantities 
V ,  h, A and A are defined by the relations: 

V h =  vdy, (1)  I 
V2h = I vzdy, 

= ( V + E ) h A ,  (3) 

where the suffix a refers to the ambient fluid. 

qualitative definition given earlier by 
The entrainment constant, E,  can now be defined in accordance with the 

= EIVI.  
dh(V+V,) 

dx (4) 

Entirely analogous definitions can be given in the case of a circularly sym- 
metrical plume or jet. 

Evaluation of E(0)  for plumes and jets 

Values of E for the neutral case can be determined from published measure- 
ments of plumes and jets. 

For the two-dimensional jet (Townsend 1956, p. 193), Vccx),  h = 0*15x, 
so E '= 0.075. For the circular jet (Townsend 1956, p. 186) we find E = 0.070. 

Measurements of plumes are notoriously unreliable, since the velocities in- 
volved are small and only a very little movement in the ambient fluid is needed 
to cause a waving of the plume and so a spurious spreading. Rouse, Yih & 
Humphreys (1952) have given measurements of the spread of circular and two- 
dimensional plumes. In  the circular case their measurements lead to E = 0.12 
and in the two-dimensional case to E = 0.22. 

Although these are probably the best available measurements of plumes, they 
cannot be regarded as definitive. In  the two-dimensional case, the source was 
surrounded by a wall which may have affected the flow. Measurements to be 
presented later in this paper do in fact confirm that the value found for two- 
dimensional plumes is far too high. 
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Another method of estimating the entrainment constant for plumes was used 
by Morton et al. (1956). They observed the height to which a plume would rise 
in a stably stratified environment. Allowing for the different definition used in 
their paper, they also found E to be 0.12 for circular plumes. Here again the 
measurements cannot be considered to be very precise; in particular, the 
greatest widths of their plumes were not small compared with the width of the 
tank and there must have been some downflow in the ambient fluid. 

To sum up, we may say that there is some suggestion that E is greater in 
plumes than in jets, but that measurements on plumes have not been sufficiently 
precise to settle the point. 

Ejfect of a boundary 

Bakke (1957) has published measurements of a wall-jet, in which the velocity 
profile resembles that of one half of an ordinary two-dimensional jet, modified 
by the presence of a thin boundary layer along the wall. His measurements lead 
to a value for E of 0.072. The slight extent of the modification caused by the 
presence of the wall suggests that it can be taken into account by including a 
frictional force in the momentum equation. The outer parts of the flow are 
little affected by the wall, and E is in excellent agreement with the values given 
earlier for jets. 

We shall see below, however, that in the case of inclined plumes the situation 
is more complex. At the rather low Reynolds numbers attainable in the 
laboratory, there is a tendency for the region between the wall and the velocity 
maximum not to become fully turbulent, and this can influence the whole flow. 

3. The effect of stable stratification 
It is well known that a stable density gradient strongly inhibits turbulent 

mixing. Richardson (1920) showed that this was to be expected from considera- 
tion of the turbulent energy balance, and in recent work (Ellison 1957 ; Townsend 
1958) further suggestions have been put forward about the mechanism whereby 
the buoyancy forces destroy the turbulence. Thus when the presence of a roof 
or floor causes a plume to be inclined so that the mixing zone is no longer nearly 
vertical as in the ordinary plume, the density difference between it and the 
ambient fluid will give rise to a change in the value of E. 

If we assume a state of local equilibrium to obtain and ignore molecular 
effects, we see that the only relevant dimensionless groups upon which E can 
depend are the absolute density difference (p-p,)/p,, and some parameter in 
the form of a Richardson number specifying the stability of the layer. This we 
define by : 

( 5 )  
Ah cos a: 

V2 

A cos a: Ri=-- - 
V2( v + v,) ’ 

where a: is the slope of the floor. Note that the Richardson number used in this 
discussion is a parameter specifying the overall state of a cross-section of the 
layer ; and it must not be confused with the local parameter based on gradients of 
density and velocity. Ri is equal to the inverse square of the internal Froude 
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number for the layer, and the analysis could equally have been written in terms 
of Fr, which necessarily represents the same physical quantity as Ri. 

Now it is generally agreed (Batchelor 1953) that provided the density 
difference is small enough, it can be neglected except where multiplied by g 
as in the Richardson number. This is equivalent to ignoring (p-pa)/pa in 
the inertia terms in the equations of motion; in other words, the fluid is treated 
as having uniform mass but variable weight. We should note, however, that 
there are cases of practical importance, such as unmixed methane layers, where 
the density differences are large and it may not be justifiable to neglect this 
parameter. 

Thus we may assert that provided the Reynolds number is sufficiently large 
and the density differences are small, E is a function only of the Richardson 
number, Ri. This assertion forms the basis of the theory presented in the next 
section. One should remember, however, that there are many situations in the 
laboratory and in nature when the Reynolds number is not sufficiently high to 
be unimportant; we shall discuss these Further later. 

4. The theory of inclined plumes 
We consider the steady state of a layer moving up a roof over a stationary 

ambient fluid. The velocity and density profiles are left arbitrary, their shape 
being taken into account by the inclusion of two dimensionless coefficients S, and 
S, in the theory. 

It is assumed that the ambient fluid is in hydrostatic equilibrium and that the 
velocities in the plume at right angles to the boundary are sufficiently small for 
the pressure to be found everywhere by integrating the hydrostatic equation in 
that direction. 

The equations for continuity of mass deficiency and for entrainment can now 
be written as follows: 

(6) VhA = A = constant, 

- E ,  
1 d(Vh) 
v ax ( 7 )  

where E is a function of Ri, which in this case may be written A cos a/V3. The 
momentum equation is 

where 

and 

1 d(S,Ah2cosa) 
+S,Ahsina, 

a( V2h) -- 
ax - -cv2-2 ax 

In  the momentum equation (8) ,  we have made use of the fact that (p,-p)/pa 
can be neglected except where it is combined with g. Equation (8) represents the 
momentum balance of the fluid contained in the elementary volume of unit 
width bounded by x ,  x+dx, y = 0, y = 00. On the left-hand side is the rate of 
change of momentum of the fluid. The first term on the right is the frictional 
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drag of the roof; the second expresses the pressure force on the layer due to its 
changing depth and density, that is, the difference of the integrated hydrostatic 
pressure on the planes x and x + dx; and the last term represents the force of 
gravity accelerating the layer. Note that while we have written the friction 
term as a force proportional to the square of velocity, the drag coefficient G 
will not be a constant even for a given wall; it  will vary with the shape of the 
profiles and the local stability in the region near the wall. A similar effect is 
observed in the lower atmosphere where the drag coefficient referred to the 
wind a t  a fixed height decreases with increasing stability. 

If any variation of S,, S, and a with x is ignored, and use is made of (5), (8) 
can be written : 

dh 
dx 

( 2  - +S,Ri) h dRi 
3Ri dx 

8,Ritana-C = (l++S,Ri)-- 

It will be useful to have in mind the magnitudes of S, and 8, during our 
theoretical discussion. In  the experiments on inclined plumes to be described 
in $ 5  we found values ranging from 0.2 to 0.3 for S, and from 0.6 to 0.9 for S,. 
The terms in (11) involving AS, are likely to be relatively unimportant. 

The development of the layer 

The entrainment equation (7) now enables us to derive from (11) separate 
equations for dhldx and dRildx. These are: 

dh 
dx 

(2 - +X,Ri) E-  S,Ri tan a + C 
1 - S,Ri 9 (12) _ -  - 

and (13) 
h dRi (l++S,Ri)E-S,Ritana+C - 

3Ri dx 1 - 8,Ri 

These equations play a role in the theory of inclined plumes analogous to that 
played by Bresse’s (1860) equation in the mathematical theory of gradually 
varying flow of a homogeneous liquid in an open channel; if one sets E = 0, 
they reduce to Bresse’s equation. 

In  ordinary hydraulics h and Ri are directly connected through the equation 
of continuity (which is simply Vh = constant in that case) so there is a certain 
depth at which Ri = 1 and another depth for which dh/dx = 0 and dRi/dx = 0. 
In  the case of the inclined plume, the behaviour of Ri is little different from that 
in ordinary hydraulics, but h is no longer connected uniquely with it. There is 
a particular value of Ri, called the normal value, Ri,, determined by the slope 
and friction, for which the right-hand side of (13) vanishes and dRijdx = 0; to 
determine Ri, one must know 8, and 8, and use measured values for E as a 
function of Ri. It is found that in many practical flows Ri attains the value Ri, 
in a short distance, afterwards remaining constant, but h continues to increase 
steadily; in fact when Ri = Ri,, 

dh 
- = E(Ri,). 
dx (14) 

The analogy with hydraulic theory may be pursued further. Equations (12) 
and (13) have six different forms of solution depending on the relative sizes of 
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S,Ri at the origin, XIRi, and 1. The distinction can still be made between 
tranquil (subcritical) flow in which XIRi is greater than unity and the velocity of 
long internal waves on the layer is greater than the flow velocity, and shooting 
(supercritical) flow in which SIRi is less than unity and disturbances are unable 
to propagate upstream. It will appear that the entrainment becomes very small 
when Ri is still somewhat less than unity, so that all tranquil flows are similar 
to the corresponding flows in ordinary hydraulics. We shall avoid the use of the 
words ‘subcritical’ and ‘supercritical’ to describe the state of the flow, since 
there is risk of confusion with the idea of a critical Richardson number at which 
the entrainment effectively vanishes. 

The type of solution of most concern to us is that for flow down steep slopes 
(discussed, for example, by Bakhmeteff (1932, pp. 75-81)) in which XIRi, and 
SIRi, are both less than unity. The flow is shooting throughout. If it starts too 
slowly, gravity accelerates the flow until Ri approaches Ri,; if it starts too fast, 
increased mixing occurs until Ri, is again approached and there is a balance 
between gravity and bottom friction and entrainment. 

A numerical solution of equations (12) and (13), using the knowledge of E(Ri) 
obtained in a later section of this paper, shows that if, for example, the layer 
was initiated with Ri = 1 and depth ho on a slope of 0.1, then a t  2 = lOh,, Ri 
would have attained a value within 0.01 of Ri,. I n  fact, the rate of change of 
Ri near the origin is so rapid that the theory cannot be expected to be at all 
accurate ; nevertheless the conclusion that the normal state is reached rapidly 
should be correct. This conclusion probably applies to a wide range of cases, and 
it is used in interpreting our experiments. It implies that, at  a given slope, the 
velocity of an inclined plume depends on the rate of output of density deficiency, 
A ,  alone. The rate of spread of the edge of the plume and the entrainment E will 
not depend on the depth of the layer nor on the distance downstream. 

5. The experimental determination of entrainment: the surface jet 
The foregoing theoretical discussion leads us to expect the entrainment to 

depend principally on the Richardson number, but it is not yet possible to 
predict its magnitude or the form of the function E(Ri) on purely theoretical 
grounds; these must be found experimentally. In  this and the following sections 
two sets of experiments are described. The first were begun before the ideas of 
this paper had been developed, and there are therefore several features of them 
which may be criticized in the light of our present knowledge; however, they 
gave the first indication of the shape of the E us Ri relation and seem worth 
presenting for comparison with the later independent measurements, which 
relate more directly to the theory. 

The surface jet  

The early experiments were carried out while the second author was in Cambridge 
and were influenced by the equipment available in the Cavendish Laboratory. 
It was convenient to use a tank about 15 cm wide, 20 cm deep and 5 m long, 
with plate-glass sides and wooden bottom and ends. At first this was fitted with 
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a sloping floor and attempts were made to study gravity flows directly, The 
essential difficulties will be discussed in connexion with the next set of experi- 
ments, but this attempt was abandoned in favour of a simpler experiment which 
permitted the mixing to be studied without the complications due to slope and 
friction. The tank was divided into two short end sections and a long centre 
compartment as shown in figure 1, by watertight partitions which were fastened 
to the sides and bottom but were slightly lower than the top of the tank. The 
experiment consisted of filling the centre section (b )  with salt solution of a known 
density, and allowing a steady supply of tap water to fill (a)  and flow over into 
(b)  and thence to the tank (c), which was simply to catch this overflow. 

- 

(a)  Fresh 

--r 
- - -  - - - - - - - - - - - - - - _ _  _ _  - 
- - - - (b)  Salt - - - - - - Overflow 

With no density difference between (a) and (b)  the flow formed a simple two- 
dimensional half-jet which a t  sufficiently high rates of flow became fully 
turbulent after a few centimetres. This then increased its depth nearly linearly 
with distance until the flow in (b)  became too disturbed for i t  to be possible to 
follow the jet further. When the fluid in (b)  was heavier than that in (a), there 
was a very different picture. Mixing began as before, but the rate of increase of 
depth soon became smaller and at a certain distance downstream, depending on 
the density difference and the rate of flow, the ‘jet ’ region changed smoothly to 
one whose depth changed very little with distance. The turbulence in the mixed 
layer was damped out, and there was no further mixing with the salt solution 
below ; the layer then remained of constant depth until it reached the second weir. 

These conditions could be maintained only for a relatively short time. The 
loss of salt from the centre reservoir meant that the flow was not really steady, 
but, in any case, the flow was finally disturbed by a wave on the interface 
travelling back from the second barrier. However, it was found possible to 
make all the desired measurements during the few seconds between the estab- 
lishment of a nearly steady state and the breakdown due to the passage of 
this wave. 

In  order to measure velocity, small plastic particles were introduced into the 
flow and photographed with a cinecamera. The particles, of density slightly less 
than that of fresh water so that they would rise slowly through it, were released 
when required from a device laid along the centre of the bottom of the tank; 
they were spaced at about 2 cm intervals over a distance of 60 om. The films 
showed the particles rising through the salt solution, moving slightly backwards 
because of the back flow necessary to replace the salt removed by mixing, and 
then moving very quickly forward as they reached the lighter layer on top. The 
position of no horizontal flow was slightly below that where the sudden density 
change occurred. To extract numerical values for the velocities, the film was 
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projected on to graph paper and the positions of the particles plotted frame by 
frame; the process is tedious, and only a few runs have been filmed and analysed 
completely in this way. However, the input velocity can readily be found from 
the flow rate and the depth a t  the weir; and it will be shown that useful informa- 
tion can be found using only this and the depth of the layer far downstream. 

In the rather peculiar flow conditions of the tank, there is some doubt whether 
or not the velocity of the backflow should be considered a true flow in the 
ambient fluid; there is some suggestion that a circulation had been set up in the 
tank, in which case it should be ignored. In  view of this doubt and the poor 
quality of the velocity profiles obtainable from the film, it was decided to com- 
promise and analyse the experiments by taking the sum of one half the back flow 

FIGURE 2. Entrainment, E, as a function of Richardson number, Ri, for three experiments 
on surface jets. The value of E(0)  has been taken from published results on neutral jets, and 
Ri, obtained from a more extensive series of measurements of the depth of the h a 1  layer. 

with the velocity near the top of the layer as V ,  and to assume that V, was zero. 
For h an average of the depth of greatest density gradient and the depth of 
greatest velocity gradient was used. The individual points showed considerable 
scatter, but by averaging over a number of particles, smooth curves of V ( z )  and 
h(z) could be drawn. These functions were then inserted in the momentum 
equation (1 1) and it was usually found that they were not quite consistent ; in 
that case, further small adjustments were made until (1 1) was satisfied. It was 
then possible to find E from (7) and Ri from (5). The results of three runs which 
have been fully analysed are shown in figure 2 .  The most important feature of 
the results is the rapid fall of E with increasing Ri. 

It is of particular interest to know whether there is a ‘critical’ Richardson 
number, Ri,, above which mixing is negligible ; for example, in Expt. 1 it appears 
from figure 2 that Ri, is about 0.74. A method of finding Ri, is available which 
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can be applied simply to a longer series of experiments. The momentum 
equation (1 l), with 8, = 1, can be integrated and written in the form 

h( 1 + $Ri) 
Ri3 

- constant. 

This shows that we need know only the input conditions and the ultimate depth 
of the layer in order to find Ri,. This depth was determined from photographs 
of flows in which the fresh water was dyed. The mean of the values of 
Rib,/( 1 + 4RiJ was evaluated from eleven experiments (since this quantity was 
much more nearly normally distributed than Ri, itself), and from this we obtain 
a ‘best’ value of Ri, = 0-83 i. 0.10. This value is marked on figure 2. 

To sum up, we have found from this series of preliminary experiments that 
E falls off rapidly as Ri increases, and that for values of Ri greater than about 
0.8 mixing is very small. A few words of caution are necessary before we attempt 
to compare these results with those of the later experiments. The numerical 
values of E and Ri depend on the definition of the velocities and depths; we 
used the velocity near the surface, which in this type of flow is likely to be close 
to but not identical with the mean velocity assumed in the development of the 
theory. In  applying the theory we have also tacitly assumed that there is local 
equilibrium at any cross-section; this is clearly not so for points near the weir 
(as is shown by the low values of E obtained before the jet has become fully 
turbulent), and any later ‘memory’ effects will tend to overestimate E. Also it 
should be noticed that the smooth E ‘us Ri curves are a result of the method of 
analysis, and the difference between separate experiments, not the scatter on 
any one curve, should be used as an indication of the magnitude of random 
experimental errors. 

6. The experimental determination of entrainment : inclined plumes 
(a )  Earlier measurements 

The only previous measurements on inclined plumes known to us are those of 
Georgeson (1943). She liberated methane or hydrogen from a shallow box on the 
roof of a concrete gallery 5 ft. wide, 6ft. high and 100 ft. long, having a slope 
of 1 in 10, and measured the depth of the layer 25 ft. and 75 ft. from the source, 
and the velocity of the leading edge of the layer. Her interpretation was based 
on an arbitrary assumption about the rate of spread of the layer, but the results 
may be re-evaluated using the theory of $4. She found that the velocity was 
proportional to the cube root of the rate of inflow and varied little with x; this 
agrees with our equation ( 5 )  and our conclusions about a normal Richardson 
number provided we assume, as Georgeson did, that the velocity she measured 
was equal (or at least proportional) to the velocity of the layer. If we use this 
velocity to calculate Ri, and obtain E by (14) from the measured rate of growth 
of the layers (the depth grew from 8 in. at 25 ft. to 14 in. at 75 ft.), we find 
E = 0.01 at Ri = 0.37. In  view of the uncertainty of interpretation of these 
measurements, they are in good agreement with our results. A point repre- 
senting these values is shown in figure 10. 

28 Fluid bfech. 6 
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More extensive experiments of the same type are currently being conducted 
by Leach (1959), and we are grateful to him for permission to quote his results 
before publication. He releases methane into a gallery having a slope of 1 : 25. 
This has a curved roof, so that the flow is not properly two-dimensional, but 
due allowance has been made for the effective width and depth of the layer in 
calculating entrainment. Leach measures methane concentration as a function 
of distance from the source and from the roof, and uses the continuity of density 
flux to define a mean velocity-a process which is equivalent to  the use of 
equations (6) and (10) with S, = 1. An average of four experiments, with 
measurements at three cross-sections, leads to values of E = 0.0039 and 
Ri = 0.46; these also are shown in figure 10. Note that Ri is increased and the 
point brought very nearly into agreement with our curve if 8, is taken as 0.9, 
which we shall see is a plausible value at high Reynolds numbers. 

(b)  Laboratory experiments 

(i) The experimental channel 

In  planning the laboratory experiments on inclined plumes emphasis was 
placed on the production and maintenance of a steady state. We required a 
nearly two-dimensional flow whose properties remained constant in time and 
which could be controlled over a wide range of flow rates, density differences and 
slopes. As in the surface jet experiments, salt solution and water were chosen 
as the working fluids in preference to gases since this enabled reasonable 
Reynolds numbers to be obtained with apparatus of practical size. (For a given 
Richardson number, Reynolds number and ratio of densities, the size of the 
apparatus is proportional to the two-thirds power of the kinematic viscosity, 
so if we had used air instead of water, the apparatus would have had to be six 
times as large.) 

The channel which was used for most of the measurements was made as large 
as possible consistent with the available water supply. It consisted of a Perspex 
box 200 x 60 x 10 cm, mounted with the largest faces vertical; it could be 
tilted to any angle between horizontal and vertical. 

The channel was filled with fresh water, and salt solution supplied from a 
tank in the roof of the laboratory to an opening at  the upper end of the bottom 
of the channel. The rate of flow was controlled by a series of nozzles which could 
be inserted into the supply pipe. The flow provided by each of these was measured, 
and so, knowing the density of the salt supply (determined by weighing), one 
could calculate the flux of density excess, A .  The solution flowed in a 10 cm wide 
stream down the full length and was removed, together with the fresh water 
that it had entrained, from the bottom corner. There was a considerable body of 
water above the flowing layer, so the effect of the top of the channel was 
negligible; but, in order to maintain a steady state, fresh water had to be added 
to make up for that lost by entrainment. We knew from the theory that the 
velocity of flow and the entrainment at a fixed slope should be independent of 
distance, and hence that the inflow velocity should also be constant. Therefore 
extra water was supplied gently at  a constant rate all along the top of the tank 
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by forcing it through a long ‘sock’ about 10 cm in diameter made of cotton 
sheeting and connected at both ends through control valves to a constant head 
tank of fresh water. The arrangement is shown in figure 3. 

Provision was made at 10 cm intervals along the centre of the bottom of the 
channel for the insertion of measuring instruments which could be traversed 
across the flow to give density and velocity profiles; since the flow was steady, 
there was sufficient time for such traverses to be made. 

Thermistors 

itlet Salt probes 
FIGURE 3. Sketch of the channel used to investigate inclined plumes. 

The density was found by withdrawing samples from the desired position in 
the flow with a fine stainless steel tube and measuring salinity continuously in 
a simple conductivity cell. This consisted of two lengths of stainless steel tube 
(1 mm diameter for most of the experiments, but 3 mm diameter for experi- 
ments with the channel vertical when very weak samples had to be measured) 
mounted rigidly and joined by a short length of insulating polythene tubing 
leaving a 3 mm gap. A potential of 2.3 V, 50 c/s, was established across the cell 
and the current read on a meter ; calibration was carried out directly against 
density using samples of known dilution. 

The velocity profiles were obtained by using thermistors encased in the tips of 
glass tubes (Standard Telephones and Cables Ltd., Type F23) set transversely 
to the flow. Each of the thermistors, which were heated with a current of about 
40mA, 50c/s, was placed in one arm of a Wheatstone bridge adjusted to  
balance when there was no flow. Movement of the water cooled the thermistor 
and threw the bridge off balance; the out-of-balance was indicated by a meter 
and used as a measure of the velocity at the tip of the thermistor. Calibration 
was carried out directly by placing the thermistors in a pipe where dyed patches 
of water could be timed between fixed marks. As with all instruments working 
on the ‘hot-wire’ principle, the output is highly non-linear (the instrument 
being most sensitive at low speeds) and depends on the temperature of the 
fluid, which was therefore recorded in each experiment and calibration run. 

28-2 
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The averaging of the considerable fluctuations in the meter readings caused by 
the turbulence in the flow was done by eye, making a somewhat subjective 
allowance for the non-linearity of the instrument. 

(ii) Description of the flow 
The salt solution can be dyed so that it can be followed easily by eye. When 

this is done, a wide variety of phenomena can be directly observed, and it will 
be instructive to describe these briefly in qualitative terms before proceeding to 
the detailed results of the measurements. 

When the flow is started, a rounded nose moves through the static water, 
usually overhanging its base slightly. At low slopes and large density differences 
this advances at about the mean flow rate of the layer behind it ; it stays about 
the same depth as the layer apart from a small bump at the tip followed by 
a depression and grows only very slowly. At large slopes and smaller density 
differences the nose becomes very turbulent and builds up continually to many 
timefi the thickness of the layer. Its velocity is then much smaller than that of the 
layer behind. This fact must be kept in mind in interpreting measurements, such 
as those of Georgeson already discussed or the results for turbidity currents, 
in which only the nose velocity was determined (although in each of these 
cases it is in fact likely that the nose travelled at much the same speed as the 
layer). The properties of noses and the factors which determine their behaviour 
make an interesting study in themselves, but one which cannot be pursued 
here. 

At low flow rates and small slopes, the steady layer behind the nose remains 
laminar with a sharp top and no mixing with the fluid above. If  the flow rate is 
increased, waves appear on the interface, and increase in size until their ampli- 
tude is comparable with the depth of the layer. They eventually break and 
transfer material upwards into the overlying water. This is a mechanism of 
mixing which can operate in very stable conditions, even when the density 
gradients are so steep that no turbulence can persist. 

At high flow rates and greater slopes, the whole of the salt layer becomes 
turbulent, and the layer spreads out as it entrains fresh water. The outer edge 
is an irregular succession of large eddies, but there is an inner region, a few 
millimetres thick, near the floor, which is less disturbed, and which appears as 
strongly coloured fluid with an irregular surface, This inner layer becomes less 
noticeable as the flow rate increases, but at intermediate Reynolds numbers it is 
very important. It appears from the measured profiles that the velocity 
maximum occurs near the position of steep density gradient ; this means that the 
shear is zero near the top of the inner layer and so there is locally no source of 
turbulent energy at this level. It is not therefore surprising that there is little 
transfer across the interface. There is clearly strong interdependence of Reynolds 
number and Richardson number effects in the range of Reynolds numbers at 
which we can study inclined wall plumes in the laboratory; at high slopes (and 
hence low Ri) very low rates of flow give turbulent plumes with no appreciable 
inner layer, while at low slopes (and hence high Ri) much larger rates of flow 
are required for the plume to become fully turbulent. A quantitative discussion 
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of the criterion for turbulence is beyond the scope of this paper, which must be 
confined to the turbulent case. 

The nature of the entrainment process and the effectiveness of our method of 
adding fresh water to the channel may be demonstrated as follows. Dye is 
added briefly to the fresh water supply; this seeps out through the sock and 
travels straight across the channel perpendicular to the plume at all slopes. 
At the edge of the plume it is trapped by the large eddies and, as it becomes 
part of the plume fluid, travels at right angles to its previous direction and much 
faster. None of the fluid in the plume escapes : transfer is always into the turbulent 
fluid. 

If too little fresh water is supplied, a pool of dilute salt solution builds up at 
the bottom of the tank. Usually, the supply of fresh water is adjusted until this 
pool just disappears, but for some purposes it is desirable to retain it; its 
position may be used as a measure of the entrainment as described later. 

In  the following sections three approaches to the problem of measuring 
entrainment as a function of Richardson number are described. We started with 
measurements involving the recording and integration of velocity profiles, but 
as our understanding of the process increased, proceeded to use simpler and more 
effective methods of characterizing the flow. 

(iii) Measurements of proJiles 

In  figure 4 are shown typical mean profiles of velocity and density difference 
for an inclined plume with a slope of 14". Note that the velocity profiles have 
a steep increase to the maximum and then a gentle, nearly linear decrease to 
zero at  the edge; the salt profiles show a very concentrated layer near the wall, 
but the concentration falls off sharply at about the height of the velocity 
maximum. The edge of the measurable salt is close to the edge of the layer 

0 70cm 
140cm 

Velocity ( cm/sec ) Density difference (%) 
FIGURE 4. Typical profiles of (a) velocity, and (b)  density in an 

inclined plume. 14'; A = 144. 
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FIUURE 6. Entrainment into plumes as a function of Richardson number, obtained by 
integration from measured profiles. The numbers marked on the points represent the mean 
value of Vh during the runs. 

values of Ph in the middle of the length over which E was measured). This odd 
effect may be attributed to the inner concentrated layer of salt. At low 
Reynolds numbers this carries most of the salt flux; little salt can pass the 
velocity maximum, but there is a turbulent region above it which is therefore 
hardly stabilized at  all by the salinity gradient. At higher Reynolds numbers the 
salt is spread right across the moving layer and has tt stronger inhibiting action 
on entrainment. This view is supported by a calculation of the factor S2 defined 
by (lo), which gives a measure of the spread of the salt relative to the velocity 
profile. We find that lower entrainment is associated with higher values of 8,) the 
range of S, for the observations shown in figure 5 being from 0.6 in a flow at low 
Reynolds number at 23" to 0.9 at the highest Reynolds number obtainable at 9". 

The same integration of salinity profiles enables us to estimate the friction 
coefficient C from (13). This is found to take values greater than would be 
found if the region below the velocity maximum were laminar but less than 
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indicated by the velocity profiles. The dilution of the plume and the increase of 
its depth with distance downstream are clearly shown. 

We have integrated profiles such as these to obtain V and h defined by (1) 
and (2) and have then calculated E and Ri using (4) and (5). The process is 
tedious, but the results for a series of experiments covering a wide range of 
conditions are presented in figure 5. It is clear that we do not obtain by this 
means a single value of Ri for each slope or even a single curve of E us Ri. Part 
of the difficulty is the limited accuracy of the velocity measurements (probably 
not better than rf: 10 yo) and the fact that the measured velocities have to be 
cubed to obtain Ri. There is, however, a trend in the results suggesting that 
E is lower a t  higher Reynolds numbers (the numbers marked on the points are 
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that associated with pipe flow in a uniform fluid. The measurements are not 
sufficiently accurate for it to be possible to describe how the friction coefficient 
depends on stability and Reynolds number. Also, when the layer has thickened, 
its depth is no longer negligible compared with its width, and friction on the 
side wall is an additional complication. 

(iv) Analysis of the outer parts of the layer 

The full analysis of the profiles gave very little useful information after a 
great deal of labour. We shall now concentrate on the region beyond the velocity 
maximum, and present a quicker method of analysis. Instead of measuring 
V and h by integrating the profiles, we choose a characteristic velocity and 
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FIGURE 6. Entrainment LM( a function of Richardson number based on meaaurements of 
the outer parts of the plume. Scales are shown for the directly measured E, and Ri,, and 
also for the equivalent E and Ri which relate to mean properties. 

length which may be found by inspection in each case. We note that the outer 
parts of the velocity profiles are nearly linear and so we use the intercepts of 
this straight portion on the height axis and on a parallel to the velocity axis 
through the velocity maximum, to define hs and x; the density at a standard 
distance above the velocity maximum, O.2hs, is used to define a flux A, = A&x. 
A single integral over each velocity profile is used to determine d( Vh)/& and 
hence E. 

The relations between V ,  and K and Ri, and Ri, were found from a study of 
those cases for which both types of analysis were available to be V = O-SOV,  and 
Ri = 3.8Ri,. It should be noted, however, that these conversion factors are 
based almost entirely on experiments at 23" and there is some uncertainty in 
applying them t o  higher slopes ; and in fact at the lower Richardson numbers the 
results of this method do not agreewell with those of our other methods (figure 10). 

The results of the simplified analysis are plotted in figure 6, where scales for 
both Ri and Ri, and for E and E, are shown. Although there is still a con- 
siderable scatter, it is less than in figure 5 and a detailed examination shows no 
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trend with Reynolds number. Note that sometimes two values of Ri are shown 
for the same E ;  these represent occasions on which the flow was accelerating 
slightly between the two measuring positions. There is clearly a decrease of 
entrainment with increasing Richardson number and an increase of normal Ri 
with decreasing slope. 

(v) Direct measurement of velocity and entrainment as a function of slope 
The success of the simple method of analysis used for the outer parts of the 

plume in the last section encouraged us to simplify even further and to seek a 
definition of a characteristic velocity which could be measured without the need 
to obtain profiles at all. 

We have noted that the velocity maximum occurs close to the region of 
large density changes, which with coloured salt solution is visible as a sharp 
interface a few millimetres from the wall. Irregularities or turbulent eddies at 
this level may be followed by eye and their passage between fixed marks on the 
channel timed to give a reproducible measure of velocity. Comparison of 
velocities obtained in this way with measured profiles shows that, when a sharp 
layer is present, one tends to follow waves on the interface and find a velocity 
slightly larger than the maximum mean particle velocity. The relation between 
V and the layer velocity, V,, is V = O-SOV, at 23"; at higher slopes, when there 
is no sharp inner layer, there is evidence that V, is close to the maximum 
velocity and that V = 0.7%. (Note that if was exactly the maximum 
velocity, the factor would be 0.70 for Gaussian profiles and 0.67 for triangular 
profiles.) The results have been interpreted on the assumption that the factor 
is a linear function of slope varying from 0-60 at 23" to 0-70 at 90". Any 
uncertainty introduced by this somewhat arbitrary procedure is not large. 
Richardson numbers have been calculated using A found from the known 
input rates and densities of the salt supply. 

The entrainment was measured by making use of the pool of dyed salt 
solution a t  the bottom corner of the channel. When the flow rates are adjusted 
so that a steady small pool forms, we know that the length of the entraining 
layer extends from the input to the top surface of this pool; mixing within the 
pool does not remove any further fresh water from the channel. The total rate 
of output was measured with a bucket and a stop-watch, and so, after sub- 
tracting the salt input, d(Vh)/dx could be found. Thus with the aid of the 
velocities obtained from the timing of the layer we can evaluate E. The method 
is much less laborious than the earlier ones, and a more extensive series of 
measurements has been possible. 

The results, which cover a wide range of output rates, density differences and 
slopes, are shown in figure 7. We have also plotted E and A/V3 as functions of 
slope in figures 8 and 9, since these relations are often required in practice. It 
is of particular interest to note that the value of E found for a vertical wall plume 
is 0.087, compared with the value of 0.075 for a neutral jet. We would not attach 
much significance to the difference between these values ; but we can say con- 
fidently that E is not as high as 0.22 which, as mentioned earlier, is the value 
corresponding to the measurements of Rouse et al. (1952). 
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FIGURE 7. Entrainment as a function of Richardson number for inclined plumes, using the 
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FIGURE 8. Measurements of entrainment into an inclined plume as a function of slope. 
Scales show both EL based on the 'layer velocity' and E based on the equivalent mean 
velocity. 

(vi) Comparison of the several methods 

I n  figure 10 we have collected together the mean curves of E vs Ri found by 
the three methods: the surface jet, the profile measurements analysed using the 
outer parts of the plume and the timing of the layers. Agreement is good, 
particularly when it is remembered how sensitive the values of Ri are to the 
velocity measurements. The surface jet tends to give the highest values of E for 
a given Ri; if this is regarded as significant, it might be explained as a 'memory' 
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effect arising because the jet is not exactly in local equilibrium. It is likely that 
the Richardson numbers taken from the profile measurements are systematically 
too low at small values of Ri, as mentioned in (iv) above. 
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FIGURE 9. Memurements of A/Va m a function of slope. The points have been obtained 
by the 'layer velocity' method but are plotted using the equivalent mean velocities. 

The curves are less firmly based at high values of Ri than elsewhere. This is 
a pity since important flows occur at low slopes, but in order to obtain satis- 
factory measurements in this region, a much larger scale experiment than is 
practical in the laboratory seems to be required. However, as we shall see in the 
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next section, when the ambient fluid is in motion the relevant Richardson 
numbers are smaller and the region which we have examined in detail is 
important even a t  low slopes. 

7. The application of the results 
( a )  Prediction of mean velocity and concentration 

The laboratory results may be used confidently to make predictions of the 
velocity of flow of a larger scale turbulent density current on a steep slope. All 
that is required is an estimate of the rate of output of light or heavy fluid; small 
changes in Ri due to Reynolds number effects or changes in the friction coefficient 
will be unimportant since V is proportional to Ria. This point is brought out 
clearly in figure 11, in which we show measurements of V based on profiles 
recorded at a slope of 23", plotted against A on logarithmic scales; V is propor- 
tional to A* over a wide range of A and the relation should continue to hold at 
higher values. The constant of proportionality could have been obtained from 
figure 9. 

10 
8 

/ 
/ *  
I 

FI~TJRE 11. Measurements of the flux of density difference, A,  as a function of the velocity 
V at 23", plotted on logarithmic scales. 

At low slopes, our results suggest that E becomes very small, so that even at  
large Reynolds numbers there should be negligible mixing of a current with its 
surroundings and so little friction at the interface. The weight of the layer must 
then be balanced solely by friction on the floor and 

A 
V3 

S,-sinct = C. 

This result is important in the theory of turbidity currents (Charnock 1959). 
At a given slope and rate of emission and hence a fixed V ,  the concentration 

in a plume at high Reynolds number is inversely proportional to h. Since 
dhldx = E,  the dilution can readily be calculated using the results for E as a 
function of slope (figure 8). 
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(b) The effect of motion of the ambient fluid 

There is considerable interest in the question of how a steady velocity in the 
ambient fluid affects the flow of a wall plume. The meteorologist wishes to know 
how large an upper wind is necessary to destroy a katabatic flow at the surface; 
and the mining engineer is interested in how fast a downhill ventilating flow is 
needed to prevent a methane layer flowing uphill along the roof of a sloping 
mine roadway. 

Using the measurements of E ZIS Ri, we can now supply rough answers to 
these questions. The results are not very sensitive to small changes in this 
relation, and are probably adequate even if there is a tendency for an opposing 
flow of ambient fluid to increase the apparent value of E (as might perhaps be 
inferred from a remark of Townsend (1956)). 

Let us again consider the case where there is a line source of density difference 
of strength A, though this is a considerable simplification of the meteorological 
situation where cooling may extend over tens of kilometres. The equations 
required are 

A ( V + E )  h = A = constant, 

where E is a function of the Richardson number which is given by 

(3) 

(4) 

and the momentum equation, which in this case may be written 

(17) 
dAh2Sl 

= - ( V + Qz C sgn ( V + V,) +#,Ah sina - 4 cos a ~ 

ax ax - 
d(V+V,) Vh 

These equations will be valid only when V is positive, that is, when the motion 
of the ambient fluid is either opposed to the natural motion of the layer or, if in 
the same direction, is less than the speed at which the layer is travelling. In  the 
case where the ambient fluid is dragging the layer forward in the same direction 
as gravity with friction as the only retarding force, the profiles will be very 
different from those assumed for plumes and our values of E are unlikely to 
apply. The velocity of the layer itself, V + V,, can take either sign. 

In  the normal state in which dV/dx = 0, the equations lead to 

For given values of a and C ,  and using our results for E(Ri), the equation (18) 
can be solved numerically to give (V+ %)/A* as a function of KIA*, that is, the 
non-dimensional layer velocity as a function of that in the ambient fluid. The 
calculation has been carried out using XI = 0.25 and X, = 0.75, for a = 0.02 and 
a = 0.1, with C = 0 and C = 0.02. The latter friction coefficient is a high value 
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which is unlikely to be reached except in small-scale laboratory experiments. The 
results are shown in figure 12. It will be seen that when V ,  opposes the natural 
flow and is greater than a value ranging between 2.4At when C = 0, a = 0.02, 
and 3*2A* when C = 0.02, a = 0-1, it is possible for the layer to flow in either 
direction. Three values of (V+V,) satisfy (18), but it is fairly clear that the 
middle one is unstable and that the layer can either flow very slowly with 
gravity, concentrating the available density difference so as to achieve the 

1 1 

FIGURE 12. Calculations of the velocity of an inclined plume with a moving ambient 
stream, based on the experimental E(Ri) relation shown in figure 10. V + V, is the velocity 
of the layer, V,  that of the ambient stream. Curves are shown for two values of the slope 
and two friction coefficients; the velocity necessary to reverse the direction of flow is seen 
to be relatively insensitive to changes in these parameters. 

necessary Richardson number, or at a moderate speed in the reverse direction. 
Physical intuition urges that since only a small fluctuation in speed from the 
slow forward moving state is needed to take the layer to the unstable solution, 
it is likely that in practice the reverse flow will be realized whenever it can exist,. 

The curves of figure 12 for different slopes and friction coefficients lie close 
together, showing that the velocity of ambient fluid required to produce 
reversal, like the free forward velocity, varies only slowly with these parameters 
and all that is needed to predict it is a good estimate of A.  However, the 
Richardson number, values of which are marked on figure 12, does depend on 
the slope, and the corresponding values of E,  which is a strong function of Ri, 
vary more markedly. We note, as mentioned previously, that small values of Ri 
are relevant when the ambient fluid is acting against gravity ; and for a given 
ambient velocity there is much more mixing when the slope is steep. The 
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entrainment becomes very small in the case of moderate ambient flows assisting 
gravity. 

Although these conclusions and the numerical values are strictly applicable 
only to the case of a turbulent layer and laminar ambient stream, it is unlikely 
that they will be affected greatly by a low level of turbulence in the ambient 
flow. It is not possible for us to test the theory in our large channel because of 
the amount of water which would be required to produce the ambient stream, 
but we have begun some experiments in a small tiltable channel 10 cm wide by 

0 5 O  10' 15' 20' 25' 
Slope 

FIGURE 13. Experimental values of the reversal velocity as a function of slope, compared 
with calculations carried out for two values of friction coefficient. Dots: A = 21. Circles: 
A = 63. 

5 cm deep and 250 cm long, which are of interest in this connexion. Salt 
solution is released from a slit across the bottom of the channel near the centre 
of its length, and may travel either with or against the main stream (which in 
this channel is necessarily turbulent at moderate velocities), depending on the 
rate of output, the main stream velocity and the slope. In  figure 13 are shown 
the measured mean velocities of the main flow necessary to produce reversal of 
the layer for a range of slopes. These are compared with the theoretical values, 
calculated on the basis of diagrams like figure 13, for two values of friction 
coefficient. The agreement is satisfactory and the measurements demonstrate 
the small dependence on slope. Note particularly that flow against the main 
stream is possible at very small slopes. 

( c )  Typical values of A 
Finally we may give some estimates of typical values of A in practical cases, 
from which velocities may be calculated. 

For a katabatic wind, suppose there is a line source equivalent to an area 
50 km long in the direction of greatest slope which is cooled at  0.1 cal min-l : 
then A = lo8 cm3 s ~ c - ~ .  The velocity of free flow would be about 

600 cm sec-l = 12 knots, 
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and the velocity of upper wind necessary to reverse it is 

2.6.4) = 1200 cm sec-l = 24 knots. 
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These values are not unreasonable. It is hoped in a later investigation to com- 
pare the theory with meteorological observations, and for this purpose it may 
be necessary to extend the theory slightly to take account of the Coriolis force 
due to the earth’s rotation. 

As an example of the release of methane in a mine gallery, let us suppose that 
10 ft.3 min-l is released in a roadway 5 ft. wide. A is then lo4 om3 s ~ c - ~  and the 
ventilating flow needed to reverse the layer would be 57 cm sec-1 = 120ft. min-l. 

In  the case of turbidity currents, our results may be used in reverse. There are 
well-documented cases in which turbidity currents have broken a succession of 
telegraph cables on the ocean floor and so their front velocity is well known. In 
this case E is very small so it is only necessary to guess C. For example, in the 
Grand Banks turbidity current of 1929, velocities of 55 knots were reported, 
so with C = 0.003, we find A = 6 x 1010 cm3 580-3. 

8. Conclusion 
The assumption that the rate of entrainment into a turbulent inclined plume 

is a function of the overall Richardson number has led to a consistent picture of 
such flows. Our experiments have determined the empirical function E(Ri) 
with an accuracy sufficient for most applications except in the range of high 
Richardson numbers where E is very small. Here much larger scale experiments 
are desirable. 

It is not claimed that this approach is in any sense fundamental, but it forms 
a natural extension of an idea which has been used successfully in uniform 
fluids. The experiments could, perhaps, be refined further to investigate 
systematically the effects of Reynolds number (for example, to explain the 
details of figure 5) .  This seems to be taking the ‘overall’ approach too far, 
however; it is likely to be more profitable to look at the local rates of transfer 
of salt and momentum and to try to relate them to local stability parameters at  
different parts of the flow. Work is now being continued along these lines, both 
for simple wall plumes and (in the smaller channel mentioned in the last 
section) for a flow with an opposing turbulent ambient fluid. 
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